First Steps in Linear Algebra for Machine Learning

The main goal of the course is to explain the main concepts of linear algebra that are used in data analysis and machine learning. Another goal is to improve the student\'s practical skills of using linear algebra methods in machine learning and data analysis. You will learn the fundamentals of working with data in vector and matrix form, acquire skills for solving systems of linear algebraic equations and finding the basic matrix decompositions and general understanding of their applicability. This course is suitable for you if you are not an absolute beginner in Matrix Analysis or Linear Algebra (for example, have studied it a long time ago, but now want to take the first steps in the direction of those aspects of Linear Algebra that are used in Machine Learning). Certainly, if you are highly motivated in study of Linear Algebra for Data Sciences this course could be suitable for you as well. This Course is part of HSE University Master of Data Science degree program. Learn more about the admission into the program and how your Coursera work can be leveraged if accepted into the program here https://inlnk. ru/rj64e.

Created by: HSE University

Language: English

Find Out More
Share
Facebook
Twitter
Pinterest
Reddit
StumbleUpon
LinkedIn
Email

Cal Tech Online Courses

Back to Top

Log In

Contact Us

Upload An Image

Please select an image to upload
Note: must be in .png, .gif or .jpg format
OR
Provide URL where image can be downloaded
Note: must be in .png, .gif or .jpg format

By clicking this button,
you agree to the terms of use

By clicking "Create Alert" I agree to the Uloop Terms of Use.

Image not available.

Add a Photo

Please select a photo to upload
Note: must be in .png, .gif or .jpg format