Text Analytics 2: Visualizing Natural Language Processing

__Visualizing Natural Language Processing is the second course in the Text Analytics with Python professional certificate (or you can study it as a stand-alone course). Natural language processing (NLP) is only useful when its results are meaningful to humans. This second course continues by looking at how to make sense of our results using real-world visualizations. How can we understand the incredible amount of knowledge that has been stored as text data? This course is a practical and scientific introduction to text analytics. That means you’ll learn how it works and why it works at the same time. On the practical side, you’ll learn how to visualize and interpret the output of text analytics. You’ll learn how to create visualizations ranging from word clouds, heatmaps, and line plots to distribution plots, choropleth maps, and facet grids. You’ll work through real case-studies using jupyter notebooks and to visualize the results of machine learning in Python using packages like pandas, matplotlib, and seaborn. On the scientific side, you’ll learn what it means to understand language computationally. How do word embeddings and topic models relate to human cognition? Artificial intelligence and humans don’t view language in the same way. You’ll see how both deep learning and human beings interact with the meaning that is encoded in language.

Created by: University of Canterbury

Level: Introductory

Find Out More
Share
Facebook
Twitter
Pinterest
Reddit
StumbleUpon
LinkedIn
Email

Cal Tech Online Courses

Back to Top

Log In

Contact Us

Upload An Image

Please select an image to upload
Note: must be in .png, .gif or .jpg format
OR
Provide URL where image can be downloaded
Note: must be in .png, .gif or .jpg format

By clicking this button,
you agree to the terms of use

By clicking "Create Alert" I agree to the Uloop Terms of Use.

Image not available.

Add a Photo

Please select a photo to upload
Note: must be in .png, .gif or .jpg format